
MATH2050C Assignment 5

Section 3.3 no. 3, 5, 7, 10.

Section 3.3

(5) y1 =
√
p, p > 0, and yn+1 =

√
p + yn . Use induction it is straightforward to see {yn} is

increasing. To show boundedness we follow the hint and use induction to show yn ≤ 1 + 2
√
p.

Assuming yn ≤ 1 + 2
√
p, we have

y2n+1 = p + yn ≤ p + 1 + 2
√
p = (1 +

√
p)2,

hence
yn+1 ≤ 1 +

√
p < 1 + 2

√
p .

(7) It is clear that xn+1 = xn + 1/xn, x1 > 0, is increasing. Were it bounded from above, its
limit exists by Monotone Convergence Theorem. Letting the limit be b > 0, then passing limit
in the defining relation of the sequence we get b = b + 1/b, which is ridiculous. We conclude
that {xn} is divergent to infinity.

(10). We claim the sequence {yn} given by

yn =
1

n + 1
+

1

n + 2
+ · · ·+ 1

2n
,

is increasing and bounded. First, we have

yn <
1

n
+

1

n
+ · · ·+ n

n
=

n

n
= 1 , ∀n ≥ 1,

hence {yn} is bounded from above. Next,

yn+1 =
1

n + 2
+

1

n + 3
+ · · ·+ 1

2n
+

1

2n + 1
+

1

2n + 2
.

We have

yn+1 − yn =
1

2n + 1
+

1

2n + 2
− 1

n + 1
> 0 , ∀n ≥ 1 ,

hence it is increasing. By Monotone Convergence Theorem {yn} is convergent.

Note. One can show that the limit is log 2.

Supplementary Problems

1. Show that the sequence {bn}, bn =
∑n

k=1
1
ka is convergent iff and only if a > 1. Hint:

Study b2n as in Example 3.3.3b in textbook.
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Solution For a > 1,

b2n = 1 +
1

2a
+
( 1

3a
+

1

4a

)
+ · · ·+

( 1

(2n−1 + 1)a
+ · · ·+ 1

2an

)
< 1 +

1

2a
+

2

3a
+ · · ·+ 2n

(2n−1 + 1)a

< 1 +
1

2a
+

2

2a
+ · · ·+ 2n

2a(n−1)

< 1 +
1

2a
+

2

2a

∞∑
k=0

1

2(a−1)k

= 1 +
1

2a
+

2

2a
1

1− 21−a
,

which shows that b2n is bounded above. Since bn is increasing, the entire sequence is
bounded above, hence it is convergent by the Monotone Convergence Theorem. The di-
vergence case is immediate since 1/na > 1/n when a < 1 and

∑
n 1/n is divergent.

2. Show that (a) xn = (1 + 1/n)n is strictly increasing and yn = (1 + 1/n)n+1 is strictly
decreasing. Hint: Try the Bernoulli inequality.

Solution We have

xn+1

xn
=

(
1 +

1

n + 1

)(1 + 1/(n + 1)

1 + 1/n

)n
=

(
1 +

1

n + 1

)(
1− 1

(n + 1)2

)n
>

(
1 +

1

n + 1

)(
1− n

(n + 1)2

)
= 1 +

1

(n + 1)3

> 1 ,

so {xn} is strictly increasing. Next,

yn
yn−1

=
(

1 +
1

n

)( 1

1 + 1/(n2 − 1)

)n
<

(
1 +

1

n

) 1

1 + n/(n2 − 1)

=
n3 + n2 − n− 1

n3 + n2 − n
< 1 ,

so {yn} is strictly decreasing.

Remark It is clear that xn < yn. In particular, xn is bounded by y1 = 4. Then we
have limn→∞ xn = limn→∞ yn = e. This provides an alternative proof of the existence of
limn(1 + 1/n)n.

3. Show the limit of (1− 1/n)n exists. Hint: Use Problem 3 in Ex 4.

Solution We have

lim
n→∞

(
1− 1

n

)n

=
limn→∞

(
1− 1/n2

)n
limn→∞ (1 + 1/n)n

=
1

e
.
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4. Prove that e is irrational. Hint: Use the inequality 0 < e−(1+1+ 1
2! +

1
3! +· · ·+

1
k!) <

1
k×k! .

Solution Suppose on the contrary that e = p/q, a rational number. Then taking k = q ≥ 2
in the inequality to get

0 < p(q − 1)!− q!(1 + 1 + 1/2! + · · ·+ 1/k!) < 1/q ≤ 1/2.

Noting that q!(1 + 1 + 1/2! + · · ·+ 1/k!) is a natural number, it is impossible to have two
distinct natural numbers whose difference is less than 1/2. Contradiction holds.


